Machine Learning and Density Functional Theory Investigation of Corrosion Inhibition Capability of Ionic Liquid

Authors

  • Aprilyani Nur Safitri Universitas Dian Nuswantoro
  • Muhamad Akrom Universitas Dian Nuswantoro
  • Harun Al Azies Universitas Dian Nuswantoro
  • Ayu Pertiwi Universitas Dian Nuswantoro
  • Achmad Wahid Kurniawan Universitas Dian Nuswantoro
  • Wise Herowati Universitas Dian Nuswantoro
  • Supriadi Rustad Universitas Dian Nuswantoro

DOI:

https://doi.org/10.59395/ijadis.v6i1.1372

Keywords:

Quantitative Structure-Property Relationship, Corrosion Inhibition, Gradient Boosting, Ionic Liquid, Machine Learning

Abstract

This study investigated the corrosion inhibition potential of ionic liquid compounds using a QSPR-based machine learning predictive model combined with DFT calculations. The Gradient Boosting (GB) model was identified as the most effective predictor, demonstrating excellent accuracy with a high R² value of 0.98. Additionally, the model exhibited low RMSE (0.95), MAE (0.84), and MAD (0.94) values. The predicted corrosion inhibition efficiencies (CIE) for three new ionic liquid compounds (IL1, IL2, and IL3) were 88.95, 90.82, and 93.16, respectively, which aligned well with experimental data. By integrating DFT simulations into the data updating process, facilitated by machine learning, the approach proved invaluable for identifying new corrosion inhibitors. This work highlighted the continuous refinement of data related to the corrosion inhibition effects of ionic liquid compounds.

Downloads

Download data is not yet available.

References

Y. Cui, T. Zhang, and F. Wang, “New understanding on the mechanism of organic inhibitors for magnesium alloy,” Corros Sci, vol. 198, p. 110118, Apr. 2022, doi: 10.1016/J.CORSCI.2022.110118. DOI: https://doi.org/10.1016/j.corsci.2022.110118

H. Jin, D. J. Blackwood, Y. Wang, M. F. Ng, and T. L. Tan, “First-principles study of surface orientation dependent corrosion of BCC iron,” Corros Sci, vol. 196, Mar. 2022, doi: 10.1016/j.corsci.2021.110029. DOI: https://doi.org/10.1016/j.corsci.2021.110029

T. K. Sarkar, V. Saraswat, R. K. Mitra, I. B. Obot, and M. Yadav, “Mitigation of corrosion in petroleum oil well/tubing steel using pyrimidines as efficient corrosion inhibitor: Experimental and theoretical investigation,” Mater Today Commun, vol. 26, p. 101862, Mar. 2021, doi: 10.1016/J.MTCOMM.2020.101862. DOI: https://doi.org/10.1016/j.mtcomm.2020.101862

M. Akrom, S. Rustad, and H. K. Dipojono, “A machine learning approach to predict the efficiency of corrosion inhibition by natural product-based organic inhibitors,” Phys Scr, vol. 99, no. 3, p. 036006, Mar. 2024, doi: 10.1088/1402-4896/ad28a9. DOI: https://doi.org/10.1088/1402-4896/ad28a9

C. Verma, E. E. Ebenso, and M. A. Quraishi, “Alkaloids as green and environmental benign corrosion inhibitors: An overview,” International Journal of Corrosion and Scale Inhibition, vol. 8, no. 3, pp. 512–528, 2019, doi: 10.17675/2305-6894-2019-8-3-3. DOI: https://doi.org/10.17675/2305-6894-2019-8-3-3

D. Daouda, T. Douadi, D. Ghobrini, N. Lahouel, and H. Hamani, “Investigation of some phenolic-type antioxidants compounds extracted from biodiesel as green natural corrosion inhibitors; DFT and molecular dynamic simulation, comparative study,” in AIP Conference Proceedings, American Institute of Physics Inc., Dec. 2019. doi: 10.1063/1.5138584. DOI: https://doi.org/10.1063/1.5138584

D. K. Kozlica, A. Kokalj, and I. Milošev, “Synergistic effect of 2-mercaptobenzimidazole and octylphosphonic acid as corrosion inhibitors for copper and aluminium – An electrochemical, XPS, FTIR and DFT study,” Corros Sci, vol. 182, p. 109082, Apr. 2021, doi: 10.1016/J.CORSCI.2020.109082. DOI: https://doi.org/10.1016/j.corsci.2020.109082

M. Akrom, S. Rustad, and H. Kresno Dipojono, “Machine learning investigation to predict corrosion inhibition capacity of new amino acid compounds as corrosion inhibitors,” Results Chem, p. 101126, Sep. 2023, doi: 10.1016/J.RECHEM.2023.101126. DOI: https://doi.org/10.1016/j.rechem.2023.101126

A. Efimova et al., “Thermal Resilience of Imidazolium-Based Ionic Liquids - Studies on Short- and Long-Term Thermal Stability and Decomposition Mechanism of 1-Alkyl-3-methylimidazolium Halides by Thermal Analysis and Single-Photon Ionization Time-of-Flight Mass Spectrometry,” Journal of Physical Chemistry B, vol. 122, no. 37, pp. 8738–8749, Sep. 2018, doi: 10.1021/acs.jpcb.8b06416. DOI: https://doi.org/10.1021/acs.jpcb.8b06416

M. D. Bermúdez, A. E. Jiménez, and G. Martínez-Nicolás, “Study of surface interactions of ionic liquids with aluminium alloys in corrosion and erosion–corrosion processes,” Appl Surf Sci, vol. 253, no. 17, pp. 7295–7302, Jun. 2007, doi: 10.1016/J.APSUSC.2007.03.008. DOI: https://doi.org/10.1016/j.apsusc.2007.03.008

M. Akrom et al., “DFT and microkinetic investigation of oxygen reduction reaction on corrosion inhibition mechanism of iron surface by Syzygium Aromaticum extract,” Appl Surf Sci, vol. 615, Apr. 2023, doi: 10.1016/j.apsusc.2022.156319. DOI: https://doi.org/10.1016/j.apsusc.2022.156319

F. EL Hajjaji et al., “A detailed electronic-scale DFT modeling/MD simulation, electrochemical and surface morphological explorations of imidazolium-based ionic liquids as sustainable and non-toxic corrosion inhibitors for mild steel in 1 M HCl,” Materials Science and Engineering: B, vol. 289, p. 116232, Mar. 2023, doi: 10.1016/J.MSEB.2022.116232. DOI: https://doi.org/10.1016/j.mseb.2022.116232

E. Li, Y. Li, S. Liu, and P. Yao, “Choline amino acid ionic liquids as green corrosion inhibitors of mild steel in acidic medium,” Colloids Surf A Physicochem Eng Asp, vol. 657, p. 130541, Jan. 2023, doi: 10.1016/J.COLSURFA.2022.130541. DOI: https://doi.org/10.1016/j.colsurfa.2022.130541

E. Li, S. Liu, F. Luo, and P. Yao, “Amino acid imidazole ionic liquids as green corrosion inhibitors for mild steel in neutral media: Synthesis, electrochemistry, surface analysis and theoretical calculations,” Journal of Electroanalytical Chemistry, vol. 944, p. 117650, Sep. 2023, doi: 10.1016/J.JELECHEM.2023.117650. DOI: https://doi.org/10.1016/j.jelechem.2023.117650

C. Verma, S. H. Alrefaee, M. A. Quraishi, E. E. Ebenso, and C. M. Hussain, “Recent developments in sustainable corrosion inhibition using ionic liquids: A review,” J Mol Liq, vol. 321, p. 114484, Jan. 2021, doi: 10.1016/J.MOLLIQ.2020.114484. DOI: https://doi.org/10.1016/j.molliq.2020.114484

M. Zunita and Y. J. Kevin, “Ionic liquids as corrosion inhibitor: From research and development to commercialization,” Results in Engineering, vol. 15, p. 100562, Sep. 2022, doi: 10.1016/J.RINENG.2022.100562. DOI: https://doi.org/10.1016/j.rineng.2022.100562

Y. L. Kobzar and K. Fatyeyeva, “Ionic liquids as green and sustainable steel corrosion inhibitors: Recent developments,” Chemical Engineering Journal, vol. 425, p. 131480, Dec. 2021, doi: 10.1016/J.CEJ.2021.131480. DOI: https://doi.org/10.1016/j.cej.2021.131480

C. Verma, E. E. Ebenso, and M. A. Quraishi, “Ionic liquids as green and sustainable corrosion inhibitors for metals and alloys: An overview,” J Mol Liq, vol. 233, pp. 403–414, May 2017, doi: 10.1016/J.MOLLIQ.2017.02.111. DOI: https://doi.org/10.1016/j.molliq.2017.02.111

M. I. Nessim, M. T. Zaky, and M. A. Deyab, “Three new gemini ionic liquids: Synthesis, characterizations and anticorrosion applications,” J Mol Liq, vol. 266, pp. 703–710, Sep. 2018, doi: 10.1016/J.MOLLIQ.2018.07.001. DOI: https://doi.org/10.1016/j.molliq.2018.07.001

E. E. El-Katori, M. I. Nessim, M. A. Deyab, and K. Shalabi, “Electrochemical, XPS and theoretical examination on the corrosion inhibition efficacy of stainless steel via novel imidazolium ionic liquids in acidic solution,” J Mol Liq, vol. 337, p. 116467, Sep. 2021, doi: 10.1016/J.MOLLIQ.2021.116467. DOI: https://doi.org/10.1016/j.molliq.2021.116467

M. A. Deyab, “Understanding the anti-corrosion mechanism and performance of ionic liquids in desalination, petroleum, pickling, de-scaling, and acid cleaning applications,” J Mol Liq, vol. 309, p. 113107, Jul. 2020, doi: 10.1016/J.MOLLIQ.2020.113107. DOI: https://doi.org/10.1016/j.molliq.2020.113107

R. Haldhar, C. Jayprakash Raorane, V. K. Mishra, T. Periyasamy, A. Berisha, and S. C. Kim, “Development of different chain lengths ionic liquids as green corrosion inhibitors for oil and gas industries: Experimental and theoretical investigations,” J Mol Liq, vol. 372, Feb. 2023, doi: 10.1016/j.molliq.2022.121168. DOI: https://doi.org/10.1016/j.molliq.2022.121168

R. I. D. Putra, A. L. Maulana, and A. G. Saputro, “Study on building machine learning model to predict biodegradable-ready materials,” in AIP Conference Proceedings, American Institute of Physics Inc., Mar. 2019. doi: 10.1063/1.5095351. DOI: https://doi.org/10.1063/1.5095351

A. Agrawal and A. Choudhary, “Deep materials informatics: Applications of deep learning in materials science,” MRS Communications, vol. 9, no. 3. Cambridge University Press, pp. 779–792, Sep. 01, 2019. doi: 10.1557/mrc.2019.73. DOI: https://doi.org/10.1557/mrc.2019.73

S. Lim and S. Chi, “Xgboost application on bridge management systems for proactive damage estimation,” Advanced Engineering Informatics, vol. 41, Aug. 2019, doi: 10.1016/j.aei.2019.100922. DOI: https://doi.org/10.1016/j.aei.2019.100922

M. Akrom, T. Sutojo, A. Pertiwi, S. Rustad, and H. Kresno Dipojono, “Investigation of Best QSPR-Based Machine Learning Model to Predict Corrosion Inhibition Performance of Pyridine-Quinoline Compounds,” J Phys Conf Ser, vol. 2673, no. 1, p. 012014, Dec. 2023, doi: 10.1088/1742-6596/2673/1/012014. DOI: https://doi.org/10.1088/1742-6596/2673/1/012014

C. Beltran-Perez et al., “A General Use QSAR-ARX Model to Predict the Corrosion Inhibition Efficiency of Drugs in Terms of Quantum Mechanical Descriptors and Experimental Comparison for Lidocaine,” Int J Mol Sci, vol. 23, no. 9, May 2022, doi: 10.3390/ijms23095086. DOI: https://doi.org/10.3390/ijms23095086

T. W. Quadri et al., “Multilayer perceptron neural network-based QSAR models for the assessment and prediction of corrosion inhibition performances of ionic liquids,” Comput Mater Sci, vol. 214, Nov. 2022, doi: 10.1016/j.commatsci.2022.111753. DOI: https://doi.org/10.1016/j.commatsci.2022.111753

D. Kumar, V. Jain, and B. Rai, “Capturing the synergistic effects between corrosion inhibitor molecules using density functional theory and ReaxFF simulations - A case for benzyl azide and butyn-1-ol on Cu surface,” Corros Sci, vol. 195, Feb. 2022, doi: 10.1016/j.corsci.2021.109960. DOI: https://doi.org/10.1016/j.corsci.2021.109960

E. H. El Assiri et al., “Development and validation of QSPR models for corrosion inhibition of carbon steel by some pyridazine derivatives in acidic medium,” Heliyon, vol. 6, no. 10, Oct. 2020, doi: 10.1016/j.heliyon.2020.e05067.

A. A. Toropov and A. P. Toropova, “QSPR/QSAR: State-of-art, weirdness, the future,” Molecules, vol. 25, no. 6. MDPI AG, Mar. 02, 2020. doi: 10.3390/molecules25061292. DOI: https://doi.org/10.3390/molecules25061292

M. E. Belghiti et al., “Computational simulation and statistical analysis on the relationship between corrosion inhibition efficiency and molecular structure of some hydrazine derivatives in phosphoric acid on mild steel surface,” Appl Surf Sci, vol. 491, pp. 707–722, Oct. 2019, doi: 10.1016/J.APSUSC.2019.04.125. DOI: https://doi.org/10.1016/j.apsusc.2019.04.125

M. Akrom, S. Rustad, A. G. Saputro, A. Ramelan, F. Fathurrahman, and H. K. Dipojono, “A combination of machine learning model and density functional theory method to predict corrosion inhibition performance of new diazine derivative compounds,” Mater Today Commun, vol. 35, p. 106402, Jun. 2023, doi: 10.1016/J.MTCOMM.2023.106402. DOI: https://doi.org/10.1016/j.mtcomm.2023.106402

H. Lgaz and H. seung Lee, “First‐principles based theoretical investigation of the adsorption of alkanethiols on the iron surface: A DFT-D3 study,” J Mol Liq, vol. 348, Feb. 2022, doi: 10.1016/j.molliq.2021.118071. DOI: https://doi.org/10.1016/j.molliq.2021.118071

L. Guo, C. Qi, X. Zheng, R. Zhang, X. Shen, and S. Kaya, “Toward understanding the adsorption mechanism of large size organic corrosion inhibitors on an Fe(110) surface using the DFTB method,” RSC Adv, vol. 7, no. 46, pp. 29042–29050, 2017, doi: 10.1039/c7ra04120a. DOI: https://doi.org/10.1039/C7RA04120A

R. Oukhrib et al., “DFT, Monte Carlo and molecular dynamics simulations for the prediction of corrosion inhibition efficiency of novel pyrazolylnucleosides on Cu(111) surface in acidic media,” Sci Rep, vol. 11, no. 1, Dec. 2021, doi: 10.1038/s41598-021-82927-5. DOI: https://doi.org/10.1038/s41598-021-82927-5

M. Akrom, S. Rustad, A. G. Saputro, and H. K. Dipojono, “Data-driven investigation to model the corrosion inhibition efficiency of Pyrimidine-Pyrazole hybrid corrosion inhibitors,” Comput Theor Chem, vol. 1229, p. 114307, Nov. 2023, doi: 10.1016/J.COMPTC.2023.114307. DOI: https://doi.org/10.1016/j.comptc.2023.114307

M. E. A. Ben Seghier, D. Höche, and M. Zheludkevich, “Prediction of the internal corrosion rate for oil and gas pipeline: Implementation of ensemble learning techniques,” J Nat Gas Sci Eng, vol. 99, Mar. 2022, doi: 10.1016/j.jngse.2022.104425. DOI: https://doi.org/10.1016/j.jngse.2022.104425

A. H. Alamri and N. Alhazmi, “Development of data driven machine learning models for the prediction and design of pyrimidine corrosion inhibitors,” Journal of Saudi Chemical Society, vol. 26, no. 6, Nov. 2022, doi: 10.1016/j.jscs.2022.101536. DOI: https://doi.org/10.1016/j.jscs.2022.101536

T. Sutojo, S. Rustad, M. Akrom, A. Syukur, G. F. Shidik, and H. K. Dipojono, “A machine learning approach for corrosion small datasets,” Npj Mater Degrad, vol. 7, no. 1, Dec. 2023, doi: 10.1038/s41529-023-00336-7.

T. Sutojo, S. Rustad, M. Akrom, A. Syukur, G. F. Shidik, and H. K. Dipojono, “A machine learning approach for corrosion small datasets,” Npj Mater Degrad, vol. 7, no. 1, Dec. 2023, doi: 10.1038/s41529-023-00336-7. DOI: https://doi.org/10.1038/s41529-023-00336-7

R. L. Camacho-Mendoza, L. Feria, L. Á. Zárate-Hernández, J. G. Alvarado-Rodríguez, and J. Cruz-Borbolla, “New QSPR model for prediction of corrosion inhibition using conceptual density functional theory,” J Mol Model, vol. 28, no. 8, Aug. 2022, doi: 10.1007/s00894-022-05240-6.

C. T. Ser, P. Žuvela, and M. W. Wong, “Prediction of corrosion inhibition efficiency of pyridines and quinolines on an iron surface using machine learning-powered quantitative structure-property relationships,” Appl Surf Sci, vol. 512, May 2020, doi: 10.1016/j.apsusc.2020.145612. DOI: https://doi.org/10.1016/j.apsusc.2020.145612

P. Giannozzi et al., “QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials,” Journal of Physics Condensed Matter, vol. 21, no. 39, 2009, doi: 10.1088/0953-8984/21/39/395502. DOI: https://doi.org/10.1088/0953-8984/21/39/395502

J. Linden and R. Marquis, “The influence of time on dynamic signature: An exploratory data analysis,” Forensic Sci Int, vol. 348, p. 111577, Jul. 2023, doi: 10.1016/J.FORSCIINT.2023.111577. DOI: https://doi.org/10.1016/j.forsciint.2023.111577

G. Ibarra-Vazquez, M. S. Ramírez-Montoya, and J. Miranda, “Data Analysis in Factors of Social Entrepreneurship Tools in Complex Thinking: An exploratory study,” Think Skills Creat, vol. 49, p. 101381, Sep. 2023, doi: 10.1016/J.TSC.2023.101381. DOI: https://doi.org/10.1016/j.tsc.2023.101381

C. Calafat-Marzal, M. Sánchez-García, A. Gallego-Salguero, and V. Piñeiro, “Drivers of winegrowers’ decision on land use abandonment based on exploratory spatial data analysis and multilevel models,” Land use policy, vol. 132, p. 106807, Sep. 2023, doi: 10.1016/J.LANDUSEPOL.2023.106807. DOI: https://doi.org/10.1016/j.landusepol.2023.106807

M. Ahsan, M. Mahmud, P. Saha, K. Gupta, and Z. Siddique, “Effect of Data Scaling Methods on Machine Learning Algorithms and Model Performance,” Technologies (Basel), vol. 9, no. 3, p. 52, Jul. 2021, doi: 10.3390/technologies9030052. DOI: https://doi.org/10.3390/technologies9030052

A. Botchkarev, “A new typology design of performance metrics to measure errors in machine learning regression algorithms,” Interdisciplinary Journal of Information, Knowledge, and Management, vol. 14, pp. 45–76, 2019, doi: 10.28945/4184. DOI: https://doi.org/10.28945/4184

X. Yuan, Z. Ge, and Z. Song, “Soft sensor model development in multiphase/multimode processes based on Gaussian mixture regression,” Chemometrics and Intelligent Laboratory Systems, vol. 138, pp. 97–109, Nov. 2014, doi: 10.1016/j.chemolab.2014.07.013. DOI: https://doi.org/10.1016/j.chemolab.2014.07.013

V. C. Anadebe, V. I. Chukwuike, S. Ramanathan, and R. C. Barik, “Cerium-based metal organic framework (Ce-MOF) as corrosion inhibitor for API 5L X65 steel in CO2- saturated brine solution: XPS, DFT/MD-simulation, and machine learning model prediction,” Process Safety and Environmental Protection, vol. 168, pp. 499–512, Dec. 2022, doi: 10.1016/J.PSEP.2022.10.016. DOI: https://doi.org/10.1016/j.psep.2022.10.016

V. C. Anadebe et al., “Multidimensional insight into the corrosion inhibition of salbutamol drug molecule on mild steel in oilfield acidizing fluid: Experimental and computer aided modeling approach,” J Mol Liq, vol. 349, p. 118482, Mar. 2022, doi: 10.1016/J.MOLLIQ.2022.118482. DOI: https://doi.org/10.1016/j.molliq.2022.118482

S. Bafandeh, I. And, and M. Bolandraftar, “Application of K-nearest neighbor (KNN) approach for predicting economic events theoretical background Application of K-Nearest Neighbor (KNN) Approach for Predicting Economic Events: Theoretical Background.” [Online]. Available: www.ijera.com

P. D. Pately, M. R. Pately, N. Kaushik-Basu, and T. T. Talele, “3D QSAR and molecular docking studies of benzimidazole derivatives as hepatitis C virus NS5B polymerase inhibitors,” J Chem Inf Model, vol. 48, no. 1, pp. 42–55, 2008, doi: 10.1021/ci700266z. DOI: https://doi.org/10.1021/ci700266z

R. L. Camacho-Mendoza, L. Feria, L. Á. Zárate-Hernández, J. G. Alvarado-Rodríguez, and J. Cruz-Borbolla, “New QSPR model for prediction of corrosion inhibition using conceptual density functional theory,” J Mol Model, vol. 28, no. 8, Aug. 2022, doi: 10.1007/s00894-022-05240-6. DOI: https://doi.org/10.1007/s00894-022-05240-6

T. W. Quadri et al., “Development of QSAR-based (MLR/ANN) predictive models for effective design of pyridazine corrosion inhibitors,” Mater Today Commun, vol. 30, Mar. 2022, doi: 10.1016/j.mtcomm.2022.103163. DOI: https://doi.org/10.1016/j.mtcomm.2022.103163

E. H. El Assiri et al., “Development and validation of QSPR models for corrosion inhibition of carbon steel by some pyridazine derivatives in acidic medium,” Heliyon, vol. 6, no. 10, Oct. 2020, doi: 10.1016/j.heliyon.2020.e05067. DOI: https://doi.org/10.1016/j.heliyon.2020.e05067

T. W. Quadri et al., “Predicting protection capacities of pyrimidine-based corrosion inhibitors for mild steel/HCl interface using linear and nonlinear QSPR models,” J Mol Model, vol. 28, no. 9, Sep. 2022, doi: 10.1007/s00894-022-05245-1. DOI: https://doi.org/10.1007/s00894-022-05245-1

T. W. Quadri et al., “Computational insights into quinoxaline-based corrosion inhibitors of steel in HCl: Quantum chemical analysis and QSPR-ANN studies,” Arabian Journal of Chemistry, vol. 15, no. 7, Jul. 2022, doi: 10.1016/j.arabjc.2022.103870. DOI: https://doi.org/10.1016/j.arabjc.2022.103870

Downloads

Published

2025-05-02

How to Cite

Machine Learning and Density Functional Theory Investigation of Corrosion Inhibition Capability of Ionic Liquid (A. N. Safitri, M. Akrom, H. . Al Azies, A. Pertiwi, A. W. Kurniawan, W. Herowati, & S. Rustad, Trans.). (2025). International Journal of Advances in Data and Information Systems, 6(1), 165-177. https://doi.org/10.59395/ijadis.v6i1.1372

Share