Sentiment Analysis of Twitter Users Towards Kartu Prakerja Program Using the Naive Bayes Method

Authors

  • Harto Tomi Wijaya Informatics Engineering, Ngudi Waluyo University, Indonesia
  • Kustiyono Kustiyono Informatics Engineering, Ngudi Waluyo University, Indonesia

DOI:

https://doi.org/10.59395/ijadis.v5i2.1342

Keywords:

Sentiment analysis, Twitter, Kartu Prakerja, Naive Bayes, Classification, deep learning

Abstract

This study conducts a sentiment analysis of Twitter users regarding the Indonesian government’s Kartu Prakerja program, utilizing the Naive Bayes method for classification. Launched in 2020 to enhance employability skills amidst the COVID-19 pandemic, the program has garnered various public responses. A total of 836 tweets containing the keyword "Kartu Prakerja" were collected using the Twitter API and analyzed to determine sentiment distribution. Results indicate a predominance of neutral sentiment (800 tweets), with only 17 positive and 22 negative tweets. The Naive Bayes method achieved an accuracy of 95%, demonstrating its effectiveness in sentiment classification. However, comparisons with other methods, such as Support Vector Machine (SVM) and Recurrent Neural Network (RNN), reveal that these techniques yield higher accuracy rates (98.34% and 96%, respectively). This research highlights the importance of sentiment analysis in understanding public perceptions and informs policymakers about areas needing improvement. The findings underscore the potential of integrating advanced machine learning techniques to enhance sentiment analysis and provide insights into the effectiveness of government programs like Kartu Prakerja.

Downloads

Download data is not yet available.

References

P. Nguyen, F. Putra, M. Considine, and A. Sanusi, "Activation through welfare conditionality and marketisation in active labour market policies: Evidence from Indonesia," Aust. J. Public Adm., vol. 82, no. 4, 2023, doi: 10.1111/1467-8500.12602. https://doi.org/10.1111/1467-8500.12602

A. Janowski, "Natural Language Processing Techniques for Clinical Text Analysis in Healthcare," J. Adv. Anal. Healthc. Manag., vol. 7, no. 1, 2023.

F. Hemmatian and M. K. Sohrabi, "A survey on classification techniques for opinion mining and sentiment analysis," Artif. Intell. Rev., vol. 52, no. 3, 2019, doi: 10.1007/s10462-017-9599-6. https://doi.org/10.1007/s10462-017-9599-6

M. Ahmad, S. Aftab, S. S. Muhammad, and S. Ahmad, "Machine Learning Techniques for Sentiment Analysis: A Review," Int. J. Multidiscip. Sci. Eng., vol. 8, no. 3, 2017.

A. Kelly and M. A. Johnson, "Investigating the statistical assumptions of naïve bayes classifiers," in 2021 55th Annual Conference on Information Sciences and Systems, CISS 2021, 2021. doi: 10.1109/CISS50987.2021.9400215. https://doi.org/10.1109/CISS50987.2021.9400215

D. Nisrina and K. Kustiyono, "Analisis Kepuasan Konsumen Menggunakan Metode Algoritma C4. 5 Berbasis Rapidminer Pada PT. Adeaksa Indo Jayatama," MEANS (Media Inf. Anal. dan Sist., vol. 9, no. 1, pp. 26-33, 2004. https://doi.org/10.54367/means.v9i1.3710

D. R. Hidayati and Kustiyono, "Pengembangan Sistem Pendukung Keputusan Rekrutmen Karyawan Terbaik Dengan Metode Weighted Product Di PT Morich Indo Fashion," MEANS (Media Inf. Anal. dan Sist., vol. 9, no. 1, pp. 15-19, 2024. https://doi.org/10.54367/means.v9i1.3713

W. P. Anggraini and M. S. Utami, "KLASIFIKASI SENTIMEN MASYARAKAT TERHADAP KEBIJAKAN KARTU PEKERJA DI INDONESIA," Fakt. Exacta, vol. 13, no. 4, 2021, doi: 10.30998/faktorexacta.v13i4.7964. https://doi.org/10.30998/faktorexacta.v13i4.7964

S. Styawati, N. Hendrastuty, and A. R. Isnain, "Analisis Sentimen Masyarakat Terhadap Program Kartu Prakerja Pada Twitter Dengan Metode Support Vector Machine," J. Inform. J. Pengemb. IT, vol. 6, no. 3, 2021, doi: 10.30591/jpit.v6i3.2870. https://doi.org/10.30591/jpit.v6i3.2870

R. Sanusi, F. D. Astuti, and I. Y. Buryadi, "ANALISIS SENTIMEN PADA TWITTER TERHADAP PROGRAM KARTU PRA KERJA DENGAN RECURRENT NEURAL NETWORK," JIKO (Jurnal Inform. dan Komputer), vol. 5, no. 2, 2021, doi: 10.26798/jiko.v5i2.645. https://doi.org/10.26798/jiko.v5i2.645

N. Sucahyo, I. Kurniati, and K. Harvit, "ANALISIS SENTIMEN MASYARAKAT TERHADAP UU CIPTA KERJA PADA MEDIA SOSIAL TWITTER," JRIS J. REKAYASA Inf. SWADHARMA, vol. 2, no. 1, 2022, doi: 10.56486/jris.vol2no1.167. https://doi.org/10.56486/jris.vol2no1.167

P. A. Nugroho, N. Sucahyo, and I. Kurniati, "Sentimen Analisis pada Sosial Media Twitter untuk Menilai Respon Masyarakat terhadap Seleksi Kartu Prakerja," J. Teknol. Inform. dan Komput., vol. 9, no. 1, 2023, doi: 10.37012/jtik.v9i1.862. https://doi.org/10.37012/jtik.v9i1.862

A. Yuliawati and T. Wahyudi, "Implementasi Data Mining Analisa Sentimen Program Kartu Prakerja Menggunakan Algoritma Naïve Bayes," TEKNIKA, vol. 18, no. 2, pp. 611-622, 2024.

P. W. Hardjita, "Penerapan Analisis Sentimen Pada Pengguna Twitter Menggunakan Metode Convolutional Neural Network Dan Naive Bayes (Studi Kasus: Kartu Prakerja)," Uin Sunan Kalijaga Yogyakarta, 2021.

A. Wanti, F. Hariri, and J. Wahyu, "ANALISIS SENTIMEN MENGENAI KEBIJAKAN KARTU PRAKERJA MENGGUNAKAN METODE NAIVE BAYES," Aleph, vol. 87, no. 1,2, 2023.

S. Sonare and M. Kamble, "Sentiment Analysis in polished Product Based Inspections data using existing supervised machine learning approach," in 2021 IEEE International Conference on Technology, Research, and Innovation for Betterment of Society, TRIBES 2021, 2021. doi: 10.1109/TRIBES52498.2021.9751663. https://doi.org/10.1109/TRIBES52498.2021.9751663

B. E. R. R. I. M. Israr, "Sentiment Analysis in Arabic Tweets," University Of Kasdi Merbah Ouargla, 2020.

A. Oussous, F. Z. Benjelloun, A. A. Lahcen, and S. Belfkih, "ASA: A framework for Arabic sentiment analysis," J. Inf. Sci., vol. 46, no. 4, 2020, doi: 10.1177/0165551519849516. https://doi.org/10.1177/0165551519849516

R. Pramana, Debora, J. J. Subroto, A. A. S. Gunawan, and Anderies, "Systematic Literature Review of Stemming and Lemmatization Performance for Sentence Similarity," in Proceedings of the 2022 IEEE 7th International Conference on Information Technology and Digital Applications, ICITDA 2022, 2022. doi: 10.1109/ICITDA55840.2022.9971451. https://doi.org/10.1109/ICITDA55840.2022.9971451

D. Berrar, "Cross-validation," in Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, vol. 1-3, 2018. doi: 10.1016/B978-0-12-809633-8.20349-X. https://doi.org/10.1016/B978-0-12-809633-8.20349-X

Downloads

Published

2024-10-26

How to Cite

Sentiment Analysis of Twitter Users Towards Kartu Prakerja Program Using the Naive Bayes Method (H. T. Wijaya & K. Kustiyono , Trans.). (2024). International Journal of Advances in Data and Information Systems, 5(2), 242-252. https://doi.org/10.59395/ijadis.v5i2.1342

Similar Articles

1-10 of 45

You may also start an advanced similarity search for this article.